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dent of the constrainis (8d)-(8e). Therefore, such constraints
can be generalized to arbirrary linear equality and inegualiry
constraints on the line flows BCTH. This property will be
exploited in Section VI to further exiend our framework.

IV. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (4) and (18) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we
will show that every equilibrium point of (4) and (18) is an
optimal solution of (9), or equialently (8). This guarantees that
a stationary point of the system efficiently balances supply and
demand and achieves zero frequency deviation.

Secondly, we will show that every trajectory (d(t),w(?),
A(t), P(), AL, 7(1), pT (1), p~ (1)) converges to an equilib-
rium point of (4) and (18). Moreover, we will show that since
P(0) = BCTH(0) (as shown in Section II-A), the line flows
will converge to a point that satisfies (5) and (7).

Theorem 9 (Optimality). A point p* 1= {d*,w*, ¢*, P* A%,
' ot p7") s an equilibrium point of 4) and (18) if
and only if (d*,w*,0%) is an optimal solution of OLC and
(df,w*, ", PY X" v n® pT% p~ %) is a primal-dual optimal
solution to the VF-OLC problem, with

w* =v', OP* = Lp#* and CT6* = CT 4. (24)

Proof: The proof of this theorem is a direct application
of lemmas 3 and 4. Let p* be an equilibrium of (4) and (18).
Then, by definition of the projection Hj and (18c¢)-(18d),
pt* > 0and p~* > 0 and thus dual feasible.

Similarly, since w; = 0, )\1 =0, 7. =0, p$ = 0 and
,0;7 = 0, then (4a)-(4b) and (18a)-(18d) are equivalent to
primal feasibility, i.e. {d*,w*, ¢*, P*) is a feasible point of
(9). Finally, by definition of (4) and (18), conditions (11),
(12) and (13) are always satisfied by any equilibrinm point.
Thus we are under the conditions of L.emma 3 and therefore
(df ,w*, ", PY A" v o pT% p~*) is primal-dual optimal
of VFE-OLC satisfying (24). Lemma 4 shows the remaining
statement of the theorem. [ ]

The rest of this section is devoted to showing that in
fact for every initial condition (w {0}, #(0), P(0), A(0}, (0},
ot (0),p(0)), the system (4) and (18) converges to one
such optimal solution. Furthermore, we will show that P(¥)
converges to a P* that satisfies (5) and (7).

Since we showed in Theorem 6 that (4) and (18) is
equivalent to (17), we will provide our convergence result for
(17). Our global convergence proof builds on recent results
of [39] on global convergence of primal-dual algorithms for
network flow control. Our proof extends [39] in the following
aspects. Firstly, the Lagrangian L(x, v) is not strictly concave
in all of its variables. Secondly, the projection (1) introduces
discontinuities in the vector field that prevents the use of the
standard LaSalle’s Invariance Principle [40].

We solve the latter issue using an invariance principle for
Caratheodory systems [41]. We refer the reader to [42] for
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a detailed treatment that formalizes its application for primal-
dual systems. The former issue is solved in Theorem 11 which
makes use of the following additional lemma whose proof can
be found in the Appendix.

Lemma 10 (Differentiability of v} (z, v)) Given any (z,v),
the maximizer of (16), vE(x,y), is continuously differentiable
provided c;(-) is strongly convex. Furthermore, the derivaiive
is given by

8 P
Fyﬁ(z y 0 |7(D£+d") 10[;} v (25)
P Az Ag wg T op

@yf:(a:,y) [ (De+d) ", |0]0]0]0] ». (26)

where Dg 1= diag(D,)cs, dy = diag(d]), and dj = d[(X; +
v;) for t € G and d = dj(A\; + v (z, ))forzeﬁ

We now present our main convergence result. Let ' be the
set of equilibrium points of (17)

Ei={(e,9): @9 =0, (%, yﬂ =0},

which by theorems 6 and 9 characterizes the set of optimal
solutions of the OLC problem.

Theorem 11 (Global Convergence). The set B of equilibrium
points of the primal-dual algorithm (17) is globally asympiori-
cally stable. Furthermore, each individual trajectory converges
to a point within F that is optimal with respect to the OLC
problem.

Proof: Following [39] we consider the candidate Lya-
punov function

Uir,y) = (a: e X~ YHa— 55*)+ (y — y"Y L {y—y*)

27)

where (z*=(¢% P*),y*=(A\jvf, 75 ot p %)) is any equilib-
rium point of {17).

We divide the proof of this theorem in four steps:

Step 1: We first use the invariance principle for
Caratheodory systems [41] to show that (x(%), y(¢)) converges
to the largest invariance set that satisfies U(a:, y) = 0 between
transitions of the projection [T, ie.

(2(8),9(8) = M C {(z,9):U(e(t),5(8)) =0,t € RF\ {tx}}

(28)

where {¢5, k € IN} are the time instants when the projection
changes between on and off.

Step 2: We show that any invariant trajectory (x(),y(%)) €
M must have A() = A and v(¢) = ¢ for some constant vectors
A and & A

Step 3: We show that whenever A(¥) = A and v(¥) = 7,
then the whole trajectory (z(¢), y(¢)) must be an equilibrium
point, i.e. M C E.

Step 4: Finally, we show that even though the invariance
principle guarantees only convergence to the set If. The con-
vergence is always to some point within £, ie. (z(¢), y(t)) —
(z*,y*) e E.
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Proof of step 1: Differentiating I/ over time gives

(0= S e+ [ S| 6-v) @

< %(m,y)(z* Sa) s e ) (30)
< Lz, y) — L{z,y) + Liz,y) — L(z,y") (3
<0 <0

where (29) follows from (17) and (30) from (2). Step (31)
follows from convexity (resp. concavity) of L(z,y) in z (resp.
). Finally, equation (32) follows from the saddle property of
the equilibrium point (z*, y*).

Therefore, since U/ (z, y) is radially unbounded, the trajecto-
ries are bounded, and it follows from the invariance principle
for Caratheodory systems [41] that (z(¢), y(¢)) — M, i.e. (28)
holds. The steps 2 and 3 below basically characterize M.

Proof of step 2: Notice that in order to have I’ =0, both
terms in (32) must be zero. In particular, we must have

L{z(t),y") = L(z*

Now, differentiating with respect to time gives

0= L@(t),v) = 2 La),y)é = || L L), 4%

which implies that 2 L{z(¢),y*) = 0

Therefore, the fact that 1} = 0, FFL(x(t),v*) = 0, and
{22a) holds, implies that z(#) must satisfy CTw} (z(t),y*) =
0, which implies that either v/} (z(2),y*) =0 (When Cr is full
row rank) or v} (z(t),y*) = lna(t) {when £ = N} where
a(t) is a time-varying scalar.

We now show that when £ = A we get v} (z(t),v") = ¢
for some constant vector p. Differentiating 4 (x(¢), v*) =
1nex(t) with respect to time and using (25) we obtain

(De+d ) LCLP((1) = 1,6(8)

%)

which after left multiplying by 1I (D + d/.) gives
15D, +d1,6() =0 — &) =0.
Thus, in either case we obtain
vi(e(),y*) = vE(CoP (1), AL) = i

for some constant vector i, which implies that CeP(t) =
CEP for some constant vector .
Therefore, it follows that v} (x(t), y(¢)) must satisfy

ve(@(t),y(t) = ve(d, y()

for some constant vector Z.
Now, using (20) with (34) we get

PP — Devi (8, u(t) — de(Ae(t) + v (3, u(t) — Co P

(33)

(34)

= 0. (35)
A similar argument using the fact that L(z*, v) = L{z*,v*)
gives
ﬂL(x* ) {QL(I* )Tr =0 (36)
By Y By 2 Y =Y.

P

8

Since the projection [-]; only acts on the p positions (36)

implies ;7 L(z*,y) =0, 5 L{z*,y) =0and J L{z*,y) =
0.
Now %L(r*, y) = 0 together with equation (23a) implies
that
Fg' = Dgyg(t) — dg(Ag(t) +vg(t) — CoP* =0, (37)
and 2 L(z*,y) = 0 with (23b) implies
Pt —dg(Ag(t) +vg(t) — CgP* =0 (38)
PR —de(Ae@) + i (2", y(@)) —Ce PP =0 (39)

Using (37) and (38) together with the fact that d;() is
strictly increasing, we get vg(t) = fg and Ag(t) = Ag, for
constant vectors g and S\Q. Moreover, since P* is primal
optimal, Lemma 6 and Theorem 9 imply that vg{(¢) = 0
and Ag(t) = AL Finally, now using (35) together with
(39), the same argumentation gives vf(z(f),y(¢)) = v, and
Ac(®) = 3\,5 for constant vectors £, and 3\5. This finishes step
2, ie A(t) = A and v(t) = 0.

Proof of step 3: Now, since A= 0, it follows from (18a} that
CT(ty = C’Tqﬁ for some constant vector qS or equivalently
@) = ¢+ )1, leferentlatmg in time 17 (x?) " 1¢(t)
gives 0= 11(x?) ¢ = (3yen 1/x¢)A which implies that
B = ﬁ’ for constant scalar A.

Suppose now that either P#0or# #0. Since CTg(2) =
CTé and v(t) = &, P and # are constant. Thus, since the
trajectories are bounded, we must have P=0and 7 =0;
otherwise U/ (x, y) will grow unbounded (contradiction).

It remains to show that p = 0, ie. ot = p~ = 0. Since
#(t) = ¢, then the argument inside (18¢) and {18d) is constant.

Now consider any of,e=13 € £ Then we have three
cases: (i) B, (qzﬁz— i) — P >0, (i) Be (qﬁz—qﬁj)—P < 0
and (iii) B, (ng1 qzﬁj.) P, = 0. Case (i) implies gf (¢t} — +co
which cannot happen since the trajectories are bounded. Case
(iiy implies that o (¢} = O which implies that 47 = 0, and
case (iii) also implies g = 0. An analogous argument gives

— = 0. Thus, we have shown that AM{ € F.

Proof of step 4: We now use structure of U (z, y) to achieve
convergence 1o a single equilibrium. First, since (x(t}, y(t)) —
M and (z(t), y(¢)) is bounded, then there exists an infinite
sequence {iz+ such that (z(iz),v(te)) — (2%, 4%) € M. We
choose this specific (z*,4*) in the definition of /. Now, it
follows from (32) that &/ {z (¢}, y(¢)) is non-increasing in ¢ and
therefore, since {/(z,¥) is quadratic, it is lower bounded and
thus U{¢) — U* = 0 (by the choice of (z*,4*) = (&*,7*)).
Finally, by continuity of U7 {z, v}, (x{),v(®)) — (3*, 4 )

Thus, it follows that (x(t),y(t)) converges to only one
optimal solution within A C F. [ ]

Finally, the following theorem shows that the system is able
to restore the inter-area flows (5) and maintain the line flows
within the thermal limits (7).

Theorem 12 (Inter-area Constraints and Thermal Limits).
Given any primal-dual opfimal solution (z*,0*) € F, the
optimal line flow vector P* saiisfies (5). Furthermore, if
P(0) = BCT6 for some 6° = RWI, then P} = Biz (¢ — 1)
and therefore (7) holds.
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Proof: By optimality, P* and ¢* must satisfy

P™ g = CP* = Lpg* = CBCT¢* (40)

Therefore using primal feasibility, (6) and (40} we have
P=CBCT¢* = ExCBCT ¢ =ExCP*=CP"

which is exactly (5).
Finally, to show that P}, = By, (¢} — ¢}) we will use (4c).
Integrating (4¢) over time gives

P(t) — P(0) = [y BCTu(s)ds.

Therefore, since P(¢) — F*, we have P* = P(0) +
BCTH* where 6* is any finite vector satisfying CT0* —
fooo CTy(s)ds.

Again by primal feasibility CBCT¢* = Lp¢* = CP* =
C(P(0) 4+ BCT#*) = CBCT(6° + 6*). Thus, we must have
¢* = (8°4+0")+al, and it follows then that P* = BCT (8°4
6*) = BCT (¢* —al,) = BOT¢*. Therefore, since by primal
feasibility P < BCT¢* < P, then P < P* < P. ]

V. CONVERGENCE UNDER UNCERTAINTY

In this section we discuss an important aspect of the
implementation of the control law (18). We provide a modified
control law that solves the problem raised in Remark 7, ie.
that does not require knowledge of ;. We show that the new
control law still converges to the same equilibrium provided
the estimation error of IJ; is small enough (c.f. (48)).

We propose an alternative mechanism to compute A;. In-
stead of (18a), we consider the following control law:

A= (Mz‘dJmLain-ZCi,ePe— ZBij(¢i—¢5j)) (41a)
ecE FENG

where M; := 0 for i € £ and a; = R is a positive controller
parameter that can be arbitrarily chosen. Notice that, while
before 1); was an unknown quantity, M; is usually known and
a; is a design parameter. Furthermore, while equation (41a)
requires the knowledge of w;, this is only needed on generator
buses and can therefore be measured from the generator’s shaft
angular acceleration using one of several existing mechanisms,
see e.g. [43].

The parameter e; plays the role of Dj. In fact, whenever
a; = D); then one can use (4a)-(4b) to show that {41a) is the
same as (18a). More precisely, if we let a; = D; + day, then
using (4a)-(4b), (41a) becomes

A :Cf‘ (Pz-m— di+dam; =3 e n, Bij (& —¢j)) )

which is equal to {18a) when da; = 0. A simple equilibrium

analysis shows that a; does not affect the steady state behavior

provided that a; = 0 for some ¢ € A. Thus, we focus in this

section on studying the stability of our modified control law.
Using (42), we can express the new system using

(42)

Ly 0 T
= X%L(a:,y) (43a)

+
g=Y (%L(z, 0T + gz, y) (43b)
)

9

Az Ag (v, 7, )
where  g(z,y):=[(§A:v2)T (4gvg)T O

with v/} = v} (z,y) and d Ag 1= diag(da;)ics.

1T, @4

?

The system (43} is no longer a primal-dual algorithm. The
main result of this section shows, that provided that «; does
not depart significantly from D; (see (48)), convergence to the
optimal solution is preserved.

To show this result, we provide a novel convergence proof
that makes use of the following lemmas whose proofs can be
found in the Appendix.

Lemma 13 (Second order derivatives of L{x,vy)). Whenever
Lemma 10 holds, then we have

&b P
o° 0 0 @
—L(x,y) = d {45
el A e T T A ) and  (43)
Az Ag vg (m, 0)
Dg(Dg + d2)71d£ 0 0 0 7az
8* 0 d, d 0 |a
——L{x,y)=— g g g
dy? (@ 9) 0 dy (Dg +d) 0 |og
0 0 0 0 (m, p)
(46)

with 2 L(z,4) = 0 and 25 L{z,y) < 0.

Lemma 14 (Partial derivatives of g(x, v)). Whenever Lemma
10 holds, then

& P
i _ 0 —(SA,Q(DQ + d"ﬁ)flcg } Ar
6$g($’ y) |: 0 O (}\g,lz‘g,ﬂ', ,O)
Ar A vg (W, p)
g —(SA,Q(D,Q + d2)71d2 0 0 0 Az
a_yg(“” y) = 0 0d4g 0O | xg
0 0 0 0 (ve,m, o)

Unfortunately, the conditions of Theorem 11 will not suffice
to guarantee convergence of the perturbed system. The main
difficulty is that d5(A; + r4) > 0 can become arbitrarily close
to zero. Therefore the sub-matrix of (46) corresponding to the
states A and v can become arbitrarily close to singular which
makes the system non-robust to perturbations of the form of
44).

This problem is solved by using Assumption 3 of Section
T which ensures that & (A; + v4) is uniformly bounded away
from zero. More precisely, using Assumptions 1 and 3 we can
show that @ < ¢/ < I which implies

d:=1/L < di=1/c] < d:=1/a. 47

Theorem 15 (Global convergence of perturbed system).
Whenever assumptions 1, 2 and 3 hold. The sysiem (43)
converges to a point in the opfimal set F for every initial
condition whenever

da; € 2(d — \/d” + d' Dugin, d + V' + d' Diin ). (48)
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where Dmin = minge s Dy

Proof: We prove this theorem in three steps:

Step 1: We first show that under the dynamics (43), the
time derivative of (27) is upper-bounded by

U(e) < / (e 2")T[H (s(s))] (+— 2*)ds

= (z*,y*), z(s) = z* +s(z—2*), and

(49)

where z = (z,y), #*
H(z) is given by (57).

Step 2: We then show that under the assumption (48)
H(z) = 0, and that for any 3 = (&, P, g, %,5) €
R2|N|+3|5|+|g‘+|7€|’ we have

sTH(2)5=0,Y2 <= 5 { e RZ : A=0,00=0,C, P=0}
(50)
where 7 = 2|N| + 3|+ |G| + | K]

Step 3: We finally use (50) and the invariance principle
for Caratheodory systems [41] to show that »(¢) = 0 and
Alt) = A
The rest of the proof follows from steps 3 and 4 of Theorem

11.
We use z = (z,y) and compaclly express (43) using

=Z[f (=)l (51)
where Z = blockdiag(X,Y) and
_[ . ELewt
F&= 1 2Ly 1 o(e.)
Similarly, (27) becomes U(z) = (2 — 2" )T Z71(z — 2*).

Proof of step 1: We now recompute U/ (z) differenlty, i.e.

U(z) = Lz =) T F N+ (2—27) (52)
(=) F () @)z —2") = (5—2) T f(z) (53)
= [y 12 F(()] (5 —2")ds+ (z—2")T £(z*)  (54)
<L =) T [ 2 F(a(s)T+2 F(a(s)] (z—2")ds  (55)
= Joa—2")T[H (2(s))] (z—2" )ds (56)

where (52) follows from {(51), (53) from ¢2), and (54) form
the fact that f(z) — f(z*) = fo 2 f(z(8))(z — z*)ds, where

‘ZL( Y) aiay (z,y) }
axayL(I y) WL(I y)

2 (=) = {
n { . 0 . 0 } ‘
=9(,y)  welz,y)
Finally, {535) follows from the fact that either f;(z*) =0, or
(z: — 2]) = z > 0 and fi(z*) < 0, which implies (= —

2T f(2*) < 0.
Therefore, H{z) in (49) can be expressed as

2 = 5 [ 2"+ L)
_ { ~elay) O }
0 oz L@, w)
+ { 0 saeale, )T }
ang(:.s ¥) %(% (@, )" + @Q(Iay))

10

which using lemmas 13 and 14 becomes

¢ (P Ag) (Ag.,vg) (m,p)
0 0] 0] 0 @
H(Z) _ 0 HP,)\,: (Z) 0 0 (P, 2e) (57)
0 0 Hy ..(z) O (g, vg)
0 0 0 0 (m, o)
where
Hpj, () =

Cﬁ(D,Q«I»d ) 10,5 1C£(D£+d ) 15}11; }
——JA;;(D,C—Q—d ) 105 —(Dg—}—dA;;)(D;;—l—d’) ldi:

,d/g

1 15Ag —d-, }
164g—

and n —(d; + Dg)

H)\g ,Vg (Z) ==

It will prove useful in the next step to rewrite Hp, (%)
using

Hpy, (z) = CT D3 () H(z)D? () C (58)

where

C =blockdiag(Cr, I, D(2) = blockdiag(Do+d, Ds+d) ™t
I 154,

i) —
(2) —164; —(DrF8ALd,

and

Notice that since D(z) = 0, D3 (z) in (58) always exists.

Proof of step 2: To show that H () < 0 and (50) holds, it
is enough to show that

H(z) <0 and Hi,, () <0, Ve (59)

To see this, assume for now that (59) holds. Then, using
(58) it follows that Hp . (2) = 0, which implies by (57) and
Hy, () < O that H(z) < 0. Moreover, 3/ [ (z)Z = 0 ¥z
if and only if

[PT AL | Hpp, () PT AT = (60)
and
(AL 5 1 Hyg e (2)[AZ 93 1T = 0. (61)

Therefore using (58) it follows that (60) and H(z) <0z
implies that C» P = 0 and Ay = 0. Similarly, Hy o (2) =0

Yz and (61) implies )\g = U = 0. This finishes the proof of
(50). Tt remains to show that (59) holds whenever {(48) holds.

Proof of H{(z) < 0: By definition of negative definite matrices,
H(z) < 0 if and only if all the roots of the characteristic
polynomials

(e + Dt + (D + dag)dy) —

6&?/4
4—6a$/4

i) =

= i+ (14 (Ds + das)dy) s +

are negative for every ¢ € £ and ¥z (recall d} depends on z).
Thus, applying Ruth-Hurwitz stability criterion we get the
following necessary and sufficient condition:

2 (624)

(62b)
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for every i € L.
Now, equation (62a) can be equivalently rewritten as:

2(d; — v/ di(dl + Dy)) < da; < 2(d; + /d}(d; + D;)). (63)

Since d} < [d,d], Di > Dmin and the function x —
v/z{z 4+ y) is decreasing in both x and y for z,y > 0, then

2(d; — /dild; + D)) < 2(d" — \/d'(d' + Droin)).-
Similarly, since z + +/z(z + y) is increasing for x,y > 0,

2(d} + /di(d + Dy)) > 2(d + /d'(d" + Diin)).-

Therefore, (62a) holds whenever da; satisifes (48).
Finally, (62b) holds whenever da; > —;—, — D¢ which in
particular holds if da; > — Dy, The follc?wing calculation

shows that 2(d’ — \/d'(d’ + Dmin)) > —Dmin which implies

that (62b) holds under condition (48):

Z(QJ - éj(dl + Dmin)) > _Dmin ~—
D2, D2,
&' (d + Diin) < 4’2+$ +d' Dot <= 0< 0,

Therefore (62) holds whenever (48) holds.

Proof of H,; »(2z) < O: Similarly, we can show that all the
eigenvalues of H,,_ »_(z) are the roots of the polynomials

S
pips) = (s + Dy + ) (s + ) — (5 — )
da
= pi 4 (Di+ 2d) s + (Ds + bas)d — 1
which, since D; + 2d, > 0, are negative if and only if
{62a) is satisfied Vi € G. Therefore, (48) also guarantees that
Ho.». <0

Proof of step 3: Since by Step 2 H (2) < 0 ¥z, (49) implies
that I/ < 0 whenever (48) holds. Thus, we are left to apply
again the invariance principle for Caratheodory systems [41]
and characterize its invariant set A (28).

Letdz = (2(¢t)—2z*) and similarly define 6 P = (P(t)— P*),
dAr =dp () =A%, dhg = Ag(t) — AL and g = 1g ) — Vi
Then since U = 0 iff 627 H(2)dz = 0, then it follows from
{50y that z{(¢) € M if and only if C 6P =0, X = 0 and
drg = 0.

This implies that Cr P(3) = Ce P*, Alt) = A and 10 (8) =
v} = 0, which in particular also implies that »/2 (z{#), (1)) =
viE(CpP(1),A(t)) = vi(Cc P*,A%) = 0. Therefore we have
shown that z(¢) € M if and only if A(#) = A* and v(2) =0
which finalizes Step 3.

2
i

As mentioned before, the rest of the proof follows from steps
2 and 3 of Theorem 11. ]

VI. FRAMEWORK EXTENSIONS

In this section we extend the proposed framework to derive
controllers that enhance the solution described before. More
precisely, we will show how we can modify our controllers
in order to account for buses that have zero power injection
(Section VI-A) and how to fully distribute the implementation
of the inter-area flow constraints (Section VI-B). Although in
principle both extensions could be combined, we present them
separately to simplify presentation.

11

A. Zero Power Injection Buses

We now show how our design framework can be extended
to include buses with zero power injection. Let Z be the set of
buses that have neither generators nor loads. Thus, we consider
a power network whose dynamics are described by

douc =wour (64a)
Mgirg = PE*—(dg+Dgwg)—Lp (g a0 (64b)
O:Pf:n—(dﬁ—‘,—Dgwg)—LB’(ﬁ’N)e {64c)
0=—Lp 2.0 (64d)

where Lp (5 g/ is the sub-matrix of L consisting of the rows
in S and columns in 5’.

We will use Kron reduction to eliminate (64d). Equation
(64d) implies that the {8;, i € Z) is uniquely determined by
the buses adjacent to Z, i.e. 8z = Lél(z,Z)LB’(Z’guﬁ)Bguﬁ.
Thus we can rewrite (64) using only 8¢, which gives

four =waur {65a)
Mgirg =Py~ (dg+Dowg)—Lip ¢ pupyfouc  (65b)
0=PF—(de+Dewe) =LYy o gupboue (65¢0)

where L, = LB,(guL,guﬁ)—LB,(guﬁ,Z)Lg,l(g,g)LB,(z,guﬁ)
is the Schur complement of Lp after removing the rows
and columns corresponding to Z. The matrix L', is also a
Laplacian of areduced graph G(G U £, £%) and therefore it can
be expressed as LY, — C#T BYFCHT where O is the incidence
matrix of G(G U £, &%) and BY = diag(ng)ijegﬂ are the line
susceptances of the reduced network.

This reduction allows to use (63) (which is equivalent to (3))
to also model networks that contain buses with zero power
injection. The only caveat is that some of line flows of the
vector BCT# are no longer present in B*C*T0g,, — when a
bus is eliminated using Kron reduction, its adjacent lines B.,
e € £, are substituted by an equivalent clique with new line
impedances Bg,, e et Asa result, some of the constraints
(8d)-(8e) would no longer have a physical meaning if we
directly substitute BCT# with B*FC* 8z, - in (3).

We overcome this issue by showing that each original
By;(0; — 6;) in G(N,&) can be replaced by a linear com-
bination of line flows B, (i — ;) of the reduced network
GG UL, EM.

For any @ satisfying (64d) we have

- (%]
0z

qour

Lo = {
? 0jz]

Thus it follows that
Ty _ Trt | 96Ul
BC*8 = BC LB{ 0z
CRBACYT 0 = APBECH B, (66)

} - BCTLIB,(N,QUL)QQU‘C

_ Tyt
=BC LB,(N,QUL)
where LTB is the pseudo-inverse of Lp.

Therefore, by substituting BCT8 with A'B*C 0, in
(8) and repeating the procedure of Section IIT we obtained a
modified version of {18) in which (18a)-{18e) becomes

No = MNP —di = T B (81— 69)) (67a)
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I
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o =L [P s Dggees AL Blybs - ) ép_ (67d)
. b/ - . T BT P
i = X | L ij(/\i"" Ag) Z‘ Crebie Z‘ A G,
ent e el 8, keI

,,,,, DCEREN AR L (oF - 03 ) (67¢c)
i & el '

where (07a) and ©7e) are forec G L, (670 is for k < K,
and (67c) and (67d} are for the original lines e € £.

It can be shown that the analysis deseribed in Sections [V
and V ostill holds under this exlension.

Remark 16, The only additional overhead incurved by the
proposed extension is the need for commupicanion berween
Inses thar are adjocent on the graph G(G L) L)%Y and were
not adjacent in G(N | E) (see Figure 3 for an illusiration).

Arenl

Fig. 3: Communication requirements for the power network
m Fig. 2. Lelt side for the case when bus 3 has no imjection
{(Section VI-A), and right side for the distributed inter-area
flow constraint formulation (Section VI-B).

B. Distributed Inter-areq Flow Constrainis

We now show how we can fully distribute the implemen-
tation of the inter-area flow constraints. The procedure is
analogous to Section VI-A and therefore we will only limit
to deseribe what are the modifications that need to he done
to (8) in order to obtain controllers that are fully distributed.

We define for each area k an additional graph G(f3;, %)
where we associate each boundary edge e € B, with a node
and define undirected edges {e,e’}  £F that deseribe the
communication links between e and ¢, Using this formulation,
we decompose equation (5) for each & into |58, equations

. .
C,!;pﬂpe ec By, kel (68)

where v, is a new primal variable that aims to guarantee
ndirectly (3). In fact, it is casy o sce by summing (68) over
[ B;c that

S Gt - f‘) =2 > bi-w=e

JrA—
ey, aByg efi{e,e’ OBy

which is equal o (3).

Therefore, since whenever (5) holds, one can find a set of
Ve salislying (68), then we can substitute (8d) with (68). I we
let 7% be the Lagrange multiplier associated with (68), then
by reéi acing (18b) and (18e) with

LY -t Ay &
p (»'i,e BH g e,

FEN ECX,ecHy
- CoeBulpf - 57)) (69c)
e & '

we cun disiribute the implementation of the inler-area flow
constraint. Figure 3 shows how the communication require-
ments are modified by this change. In particular, since n¥
andd qwi‘: can be co-located and compuied together with A; and
¢, where ¢ denctes the bus of area & adjacent to the tie-line
e, many of the communication links used for A; and ¢; can
be reused. 1L can be shown thal the addidonal communication
links required to implement the distributed version of the inter-
area flow constraints is er most |5| — 1 per area, while for
the centralized solution this number is always 2|Bs] per area.
Finally, il each houndary bus has only one mcident boundary
edge, ie. if 3 pex cepn,CreBe (ﬂ?;,;,e?rff has at most one term,
the convergence results of sections IV and V extend to this
case.

VI NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in Figure
4, to fest our scheme. We assurmne that the system has two
independent control areas that are connected through lines
(1,2), (2,3) and (26,27} The network paramelers as well
as the inilial stationary point (pre fault state) were oblained
from the Power System Toolbox [44] data set. Each bus is
assumed 1o have a controllable load with T; = diax, Duax)s
with dpax = 1pu. on a 100MVA base with ci(-) and the
corresponding d;(-) =¢; 1() as shown in Figure 5.

Throughout the simulations we assume that the aggregate
generator damping and EOjid frequency sensitivity parameter
D; = 02Vie N and x& = ¢} o ¢ = ¢pb w1,
forall ¢ ¢ N, bk &« X and e £ £ These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of [’ are corrected so
that they mitially add ap to zero by evenly disiribuling the
mismatch among the load buses. P’ is obtained from the
starting stationarv condition. We initially set F and £ so that
they are not binding.
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Fig. & Areas Freguencies and Aggregale Infer-area Flow

We simulate the OLC-system as well as the swing dynam-
ics (4) without load control (4; = 0), afler introducing =
perturbation at bus 29 of /5§ —~ —2pu.. In some scenarios
we disable a few of the OLC constraints. This is achieved by
fixing the corresponding Lagrange multiplier to be zero.

13

LMPs nter area line flows

i
13 £

inter area line flows

o [F] ar at W ] st v i = ) W % ]
i i

Fig. 7: LMPs and inter area line flows: without thermal limits
(lop), with thermal Hmite (bottom)

Figure 6 shows the evolulion of the bus frequencies and
the inter-area flow for the vncontrolled swing dynamics {a),
the OLC system without inter-area constraints (b), and the
OLC with area constraints (). It can be seen that while the
swing dvnaniics alone fail to recover the nominal frequency
(a), the OLC controllers can jointly rebalance the power as
well as recovering the nominal frequency (b and ¢). The
frequency stabilization when using OLC seems to be similar
or even better than the swing dynamics. Figure 6 shows
that, interestingly, even in the case where the inter-area flow
consfraint is nol aclive () the infer-urea Now takes longer Lo
settle to the new value. This has a smoothing effect that makes
the transition of the power flows to the new steady-state less
sudden.

Now, we illustrate the action of the thermal constraints by
adding a constraint of P, = 2.6pu. and P, = ~2.6p.u. o
the tie lines between areas. Figure 7 (top) shows the values of
the multipliers A;, that correspond to the Locational Marginal
Prices (LAMPs), and the line flows of the tie lines for the same
scenario displaved in Figure 6 (¢}, i.e. without thermal limits.
It can be seen that neither the inifial condition, nor the new
steady state satisfy the thermal limit (shown by a dashed line;.
However, once we add thermal limits to our OLC scheme
(hottom of Figure 7), we can see that the system converges (o
a new operating point that satisfies cur constraints.

Finally, we show the conservativeness of the bound obtained
in Theorem 15. We simulate the perturbed system 4), (41a)
and (18b)-(18f) under the same conditions as in Figure 7 (top),
ie., without enforcing thermal limits. We set the scalars a;s
such that the corresponding da;s are homogeneous for every
bus 7. We also do not enforee Assumption 3 and use the same
d; as deseribed in Figare 5. This implies that (48) in Theorem

Figure & shows the evoluiion of the frequency w;
and LMPs A; for different valves of da; belonging to
{~04, -0.21, 0.2, -0.19,0.0}. Since 1); = 0.2 at all the
buses, then da; — —0.2 is the threshold that makes a; go from
positive to negative as duy decreases. Even though condition
(4% i not satisfied for amy day, our simulations show that
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Fig. 8: Frequency and Location Marginal Prices evolution for
homogeneous perturbation da; € {—0.4,—0.21,—0.2,—0.19, 0}

the system converges whenever a; > 0 (da; > —0.2). The
case when da; = —0.2 is of special interest. Here, the system
converges, vet the nominal frequency is not restored. This is
because the ferms dauw; (42) are equal to the terms Dy
in (4a)-(4b). Thus «; and A; can be made simultaneously
zero with nonzero w. Fortunately, this can only happen when
a; = 0 Vi which can be avoided since a; is a designed
parameter.

VIII. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance and operational constraints of a power network after
a disturbance by dynamically adapting the loads. We show
that provided communication is allowed among neighboring
buses, it is possible to rebalance the power mismatch, restore
the nominal frequency, and maintain inter-area flows and
thermal limits. OQur distributed solution converges for every
initial condition and is robust to parameter uncertainty. Several
numerical simulations verify our findings and provide new
insight on the conservativeness of the theoretical sufficient
condition.

APPENDIX
A. Pioof of Lemma 3

Proof: Assumptions 1 and 2 guarantee that the solution
to the primal (OLC) is finite. Moreover, since by Assumption
2 there is a feasible d = Int?, then the Slater condition is
satisfied [33] and there is zero duality gap.

Thus, since OLC only has linear equality constraints, we can
use Karush-Kuhn-Tucker (KKT) conditions [33] to character-
ize the primal dual optimal solution. Thus (d*,w*, P*, ¢*, %)
is primal dual optimal if and only if we have:

(i) Primal and dual feasibility: (9b)-(9e) and o7,
(i) Stationarity:

—L(d* whx® ety =0,

%L(d* wh z*, %) =0
(iii) Complementary slackness:

p =0

i 8 B N
BwL(d Jw o™y =0 and

14
i (B z‘j(@ﬁ* $;)— Py) =0, ijeé;
10::7 (f?.] "3.3‘ (QB* *)) = 0 3-7 =

KKT conditions (i} and (iii) are already implicit by assump-

tions of the lemma.
The stationarity condition (ii) is given by

ad OL (4, P ¢, 0"y = ddl) — (W + A1) =0 (T00)
aw,(d*,w*,P*,qﬁ*,a*) = Di{wf —v{) =0 (70b)
oL * * * * AN % *

ﬁ(d S W 7P7¢ 70')*1'/371/?‘*0 (70C)
O (@', P, 4,0%) = Sgen, Bl — M)

+ Fess Ci,eBe (Eke]c ék,eWI: +plt =) =0 (70d)

Since [); > 0 equation (70b) implies »f = w}. Thus, (70b)
and (70a) amount to the first and second conditions of (11).
Furthermore, since the graph & is connected then (70c¢) is
equivalent to v} = & Vi € A which is the third condition of
(11).

Since ¢;(d;) and w* are strictly convex functions, it is
easy to show that 17 and Af are unique. To show & =0 we
use (i). Adding (9b) overi « N gives

0= sen (P — (@} + Dwf) = Y eee Ci P
= YEn (Pz'm —(df + Diwf)) — > emijes (Cae e + Che )
= Yiew (B — (d} + Die})) (71)
and similarly (9¢) gives
0 =Fiene Blr — a2)
Thus, subtracting (71) from (72) gives
0=>3 ien Diw! =3 e Divf =03 e Ds
and since D; > 0 %i € A, it follows that & = 0. ]
B. Proof of Lemma 4
Proof: Let (d*w* = 0,8*) be an optimal solution of

OLC. Then, by letting ¢* = #* and P* = BCT§*, it follows
that (d*,w* = 0,4*, P*) is a feasible solution of VE-OLC.
Suppose that (d*,w”,¢*, P*) is not optimal with respect to
VE-OLC, then the solution ( d* A*,qb* P*) of VE-OLC has
strictly lower cost 5 ;- ci(di) = D: ;’ < Y en ildl). By
Iremma? we have that w* = 0. Then, it follows that by setting
& = ¢*, (d*,0*, 8%) is a feasible solution of OLC with
strlctly lower cost than the supposedly optimal (d*,w*,6%).
Contradiction. Therefore (d* AL P*) is an optimal solu-
tion of VHE-OLC. The converse is shown analogously. [ |

C. Proof of Lemma 5

Proof: A straightforward differentiation shows that the
Hessian of $; (14, A;) is given by

; X
@ sy | @D —di ] ow
a(w,}\i)z(ﬁz(yz: )\z) = 70;; 761].; A (73)

0018-9236 (c) 2016 TEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standardsfpublications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT10.1109/TAC.2017.2713529, IEEE

Transactions on Automatic Control

where d} is short for di{A; + 1) and denotes de derivative of
di(-) = cgfl(') with respect to its argument.

Since ¢; is strictly convex d} > 0. Thus, since D; > 0, (73)
is negative definite which implies that ®;(;, A;) is strictly
concave. Finally, it follows from (14) that L(x,o) is strictly
concave in (i, AJ. [ |

D. Proof of Lemma 10

Proof: We first notice that v/ (z,v), ¢ € £, depends
only on A; and CyP = >, g ;. F.. Which means that
55¢VT:(55 yv) = 0, afgyz(xa y) 0, Zvi(@y) = 0,

5oV (@, y) = 0and 57 yz (x,y) is diagonal.
Now by deﬁmtlon of v}i(x,y), for any ¢ € £ we have

= %L(Iryvyf:('rr y)) :P:ﬂ*DIV:(Iry)
—di(di + ] (2,0)) = Feen Cie Fe

Therefore, if we fix P and take the total derivative of
%L(m,y, vf(x,y)) with respect to A; we obtain

(74)

d 7] #
0= 4 (5Ll vi(ey) 75)
~(Ds i+ ) gyl — s ) (6)

where here we used ¢} for short of v} (z, ).
Now since by assumption c;(-) is strongly convex, ie.

f() = o di() = gy < 5 < oo Thus, (D +df) is
finite and strictly positive, which implies that
d; )\:', : 2
O ey G

ax (Ditdi v (2w)
Similarly, we obtain

a 1

= (T,y) = — Ciy ie Ll

0P Y = D O+ i)

where C; is the ¢th row of (.
Finally, notice that whenever dj(A; + 1)) exists, then 21}

5
and g v also exists.

E. Proof of Lemma 13
Proof: Using the Envelope Theorem [38] in (16) we have

aL aL .
%(az,y) - %(:ﬂ:, yayﬁ('T’ y))
which implies that
oL a [8L
@(5’3’9):% (%(5’3 y,vr(x,y))
8L 8L a
= Ly w) = e @i y) v y)
8L a
- Bzdvr (l‘,y,VE(l‘,y))%I/E(IL‘, y) (77)

where the last step follows from L(x, o) being linear in .
Now, by definition of v} (x,y) it follows that

&L X
87(1‘7 U, Vﬁ(‘r:y)) =0. (78)
-
Differentiating (78) with respect to x gives
8L N 8L . a
- m(ma y’V£($= y)) + @(‘I’y’ Vﬁ(‘r’ y))%”’ﬁ(‘r’y)
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and therefore
0°L 8L ) ’
axa (‘T y,Vﬁ(l‘ y)) m(rryvyﬁ(‘rry))
* T 62[/ *
*%V,::(l‘a y) @(1‘7 Y, V,::(l‘: y)) {79)
Substituting (79) into (77) gives
T &*L
( ) = —g-vh(m )T o 0z YL, y)) vi(z,y).
{80)
It follows from (20) and (15) that
9L 9°P
G (=t (@ ) = (39), M) =~ (Do),
(81)
Therefore, substituting (25) and (81) into (80) gives {(45).
A similar calculation using (26) gives (46). [ |

F Proof of Lemma 14
Proof: By definition of g{x,y) we have

a Ae Ag {vg, ™, 0)
5,9y = [(6AcZv)T (64 Zve)T 20 T
Thus, using Lemma 10 we obtain 2 g(z,y). A similar

computation gives 5%9 (z,y). [ ]
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